
Investigating the use of Modern Heterogeneous
CPU-FPGA Architectures on the 3-SAT Problem

Gabriel Coimbra
Universidade Federal Viçosa, UFV

Florestal, Brazil
gabriel.coimbra@ufv.br

Lucas Bragança
Universidade Federal Viçosa, UFV

Florestal, Brazil
lucas.braganca@ufv.br

José Augusto M. Nacif
Universidade Federal Viçosa, UFV

Florestal, Brazil
jnacif@ufv.br

Abstract—The technology of Field Programmable Gate Array
(FPGA) has been very promising in solving problems with low
power cost and high performance. In this paper, we investigate
how an FPGA can help accelerate traditional CPU/GPU SAT
solvers. For this, we used OpenCL, a framework that provides
an easy-to-use programming interface across heterogeneous plat-
forms. We were able to design an accelerator that can solve up
to 40 variables of a satisfiable instance in 14 ms. Unsatisfiable
instances with 20 variables can be solved in 343 ms.

Index Terms—SAT, bruteforce, FPGA

I. INTRODUCTION

SAT is a large studied NP-complete problem on Com-
puter Science and Mathematics. It checks if there is a com-
bination of the variable values in a boolean formula that
can successfully satisfy it. A formula is represented by a
Conjunctive Normal Form (CNF) [1], which is a logic con-
junction of clauses. Every clause then holds the literals in a
disjunction as the example in 1. This means that at least one
literal in each formula must be true for the whole instance to be
true. This problem has been largely studied and has numerous
varieties of applications in Electronic Design Automation
(EDA), Automatic Theorem Proving and Artificial Intelligence
[2].

(X0∨¬X1∨¬X2)∧(¬X1∨X2∨X3)∧(X1∨¬X4∨¬X3) (1)

Since the introduction of Davis-Putenam-Longemann-
Loveland (DPLL) algorithm [3], which is the base current CPU
SAT solvers rely upon, a lot of new techniques and heuristics
have been introduced in the basic SAT arsenal. Conflict Driven
Clause Learning (CDCL) presented in [5] is now the state-of-
the-art of the majority of the solvers. But recently, instead
of searching for a better algorithm for increasing the CPU
perfomance, many of studies begin to shift the focus to
GPUs or FPGAs for accelerating the solving process [6]–
[13]. Because the inherently sequential nature of SAT [14],
is challenging to build SAT solvers with good performance on
FPGAs. We use OpenCL, an alternative to Register Transfer
Level (RTL), that is often increases productivity with the cost
of lower throughput.

In the paper, we show how a low latency acceleration
pipeline is implemented with OpenCL in a heterogeneous
CPU-FPGA platform. The algorithm is a simple brute force

which relies upon the fast circuitry that it is built in the FPGA
for targeting specific problems. For better results within our
algorithm we targeted 3-SAT problems, a variation of SAT
which every clause has at maximum three literals. As we
can successfully turn any SAT in a equisatisfiable 3-SAT in
polynomial time [15] we take advantage of this property to
extend the range of applications of this solver back to the
original SAT.

In a recent study, Yuan et al [6] claims that the software
solver is faster if a small number of variables are left undecided
for the FPGA. They’ve shown that, in some instances using
MiniSAT, a golden goal effect is observed: about 25% CPU
time is spent on the last 16 variables, and over 45% is spent
on the last 20. This is also our main motivation for a brute
force algorithm. With an Altera DE2-115 board, they were
able to solve fixed instances with 13-variables in linear time
as the number of clauses increases. The main difference from
our design, is that the FPGA space is saved with the cost of
time complexity, since they generate a cell for each possible
assignment, and we have a single solving unit.

The remainder of this paper is structured as follows: we
first discuss related work in Section II, then we give a brief
explanation of our platform and describe the algorithm and
our limitations in Section III. In Section IV we describe the
results and then we proceed to show some related works and
what could be done to improve our design in Section IV.

II. RELATED WORK

Thong et al. [9] made a thorough Ph.D thesis about SAT
solving on FPGAs. Their design consists of a multithreaded
FPGA accelerator unit. Variables are hardware addresses that
do not require any transformation or clause lookup resulting in
a more compact and faster memory. The hardware is intended
to solve Boolean Constraint Propagation (BCP), generated by
in process of solving the formula, since BCP is the most time
consuming for the CPU. They use complex data structures for
storing SAT, including linked lists and arrays. The architecture
consists of a network of Processing Elements (PE) that each
one performs a BCP implication.

Yuan et al. [6] aims to extract fixed scale sub-problems
with a software solver and brute-force the problem’s variables
in hardware. They describe two architectures: the hardware
side is a conjunct of cells, each one test all clauses for a



specific assignment. On the host side, the CPU processes the
formula until 13 variables are left undecided and then pushes
the partition to the hardware and repeats until the formula is
found to be SAT or UNSAT. Similarly to our implementation,
we leverage the communication overhead limiting the data
transfer to the formula as input and the result as output. The
software continuously sends more instances to be solved in
the FPGA and backtracks if a subinstance was found to be
unsatisfiable.

Davis et al. [13], present a hardware co-processor for BCP
acceleration and also establish architectural requirements that
every CPU-FPGA solver should follow to present good perfor-
mance. Using a popular hypergraph tool hMetis, they ensure
that the partitions do not have cross dependencies and dispatch
the generated partitions to several inference engines in the
FPGA. These engines then performs several implications with
the given partitions and tries to detect conflicts. This design
is mainly limited by the BRAM capacity of the FPGA, since
the inference engines should store the partitions while solving.
Instead of OpenCL, all these works use RTL languages such as
Verilog or VHDL. We also have to consider their limitations,
as example [6] uses a Cyclone IV board which is higher
limited than our Arria 10.

These works implement heterogeneous solvers, but they
differ on the granularity of the parallelism [18]. Yuan et al.
test multiple variables in parallel and thus have a variable level
parallelism. Davis et al. the division of the SAT provides at
partition level, since they partition the problem into many sub
instances. At last, in Thong et al. the design is at task/thread
grade, since it launches multiple threads at the same time for
a single instance. Our work, like Yuan et al. is at variable
level and also have a minimal data transfer cost, since the
communication is minimal: we send the problem to the FPGA
and get back the results. As opposed to Gulati et al. [10],
[11], we store the problem data continuously in a vector with
linear space (in these papers, they store the variables and the
clauses in a matrix). And also opposed to Yuan et al. [6], our
accelerated portion scaling on the FPGA is quadratic to the
number of variables, instead of exponential, this would ease
the replication of the hardware.

III. METHODOLOGY

Our platform, Intel-Altera Heterogeneous Architecture Re-
search Platform (HARP), is an Altera Arria 10 FPGA and an
Intel Xeon E5 CPU integrated by a QuickPath Interconnect ™
bus with a bandwith up to 12.4 GB/s [19] . The FPGA has
access to the platform RAM memory, the shared memory using
a DDR4 bus.

We develop our algorithm in OpenCL which is a High Level
Synthesis (HLS) language, it provides anyone with a basic
knowledge of the internals of the FPGA the ability write an
algorithm in a high level language and successfully translate
to RTL.

The workflow in Figure 1, follows the steps: using the
Altera Offline Compiler we generate a binary bitstream of
the OpenCL kernel and then we image this kernel into the

FPGA. On the host side, we have a C/C++ program where
we share memory containing the problem. We also start
multiple kernels, stop and synchronize with board. Emulation
capabilities are also available, Altera ™provides an offline
emulator tool that is capable of compiling the code of the
OpenCL kernel into x86-64 architecture.

Fig. 1. OpenCL workflow.

Our algorithm relies on the OpenCL 1.0 specification and
we synthesized our device Intel® Software Development Kit
(SDK) for OpenCL ™.

We store the data in the Conjunctive Normal Form (CNF)
format [1] in a vector. The output is the assignment list and
the result. If the formula has N variables, then the assignment
list has N bits. The result is just one bit long.

After the host shares the data and starts the kernel, the kernel
then proceeds to download all the formula from the shared
memory to it’s high speed Block Random Access Memory
(BRAM). Then it launches the Algorithm 1.

The algorithm, for each combination of variable values, tests
all formula’s clauses under the current assignment. For this
test, we use a exclusive OR logic operator since if the variable
is negative in the formula it cannot also be negative on our
assignment list and vice-versa.

In the software solver, the cycle of sending the problem and
using the result can be repeated while there is still variables
which the values are unknown.



Algorithm 1 SAT Brute force
1: procedure SOLVER(formula)
2: a← permutations of variables
3: for each assignment do
4: result← Evaluate(formula, assignment)
5: if result is SAT then
6: return SAT

return UNSAT
. All clauses tried.

7: procedure EVALUATE(c, a)
8: i← 0
9: for each clause in formula do

10: for n = 0 while n less than 3 do n++
11: value← current variable assigment
12: if value ⊕ clause[i+ n] then
13: Continue
14: else return UNSAT . Formula is false.
15: i← i+ 3 . Next clause.

return SAT . All clauses tested.

The algorithm in Figure 1 works as follows, for the gen-
erated combination of possible variable values it checks all
three literals in the first clause. This is made with a exclusive
or logic operation, since if the literal is negated in the clause,
it can’t be on the assignments. Then, the algorithm proceeds
to check every other clause left. With first clause that is not
satisfied, the algorithm then advances to another combination.

With this algorithm it becomes clear why the decision to
turn SAT into 3-SAT: if the number of literals in a clause is a
variable number, we would need a second loop with unknown
bounds and our SDK will be unable to pipeline this loop since
we don’t know it’s range. This characteristic is also present
on original SAT problems. It is possible for our design to
solve loops with dynamic limits, but then it becomes orders
of magnitude more slower, since there is no pipelining.

Although our SDK performs many optimizations in our
algorithm and is able to archive a high parallelism, we keep the
code as simple as possible and use primarily cheap operations
to the FPGA, like shifts, adds and logical operations. Even
the BRAM access is leveraged by using wires within the
circuit when a the algorithm needs a specific value, instead of
accessing the memory blocks. With these characteristics and
the fact that there is no need for synchronization, we have a
very small communication cost in the solving process.

IV. RESULTS AND DISCUSSION

In this section we present our device’s resource usage and
a more deep discussion about our results.

Processing the formula within the shared-memory would be
impratical since the high latency access in the shared memory
bus. We bypass this by storing locally the problem in the
FPGA’s BRAM when the kernel starts. Because of this choice,
the problem size is limited by BRAM memory.

TABLE I
RESOURCE UTILIZATION AS REPORTED BY THE SDK FOR 40 VARIABLES

SOLVER.

Resource Utilization
Logic utilization 51%
ALUTs 23%
Dedicated logic registers 28%
Memory blocks 25%
DSP blocks 12%
Compilation Time 140 minutes

As seen in Table I the compilation is very time consuming.
This is normal using this SDK for this architecture and does
not reflect much the complexity of the solver, since simpler
designs like a vector addition example provided in [4] takes
about 122 minutes on the same system.

TABLE II
TIME RESULTS FOR SAT SOLVING.

SAT? Clauses Variables FPGA Time (µs)
Yes 8 8 4,675.0
Yes 8 50 5,048.04
Yes 16 16 4,452.4
Yes 16 80 9,392.9
Yes 20 20 14,926.0
Yes 20 100 19,558.2
Yes 31 31 14,667.5
Yes 40 40 14,847.8
No 5 40 4,155.0
No 8 40 4,068.1
No 8 200 3,692.5
No 16 80 23,373.3
No 16 200 26,320.2

It is really hard to estimate a time when a formula is proven
to be satisfied. Because the proof of the problem can be
anywhere between the first and last assignment. One way to
analyze the results in Table IV, is using the worst-case scenario
as a upper limit of time spent in problems with that size.

The number of variables and clauses were chosen on this
principle: is hard to generate a formula with many variables
and not a big corresponding number of clauses that is UNSAT.
This is true when trying to generate random formulas. The
contrary is also true, is hard to generate a formula that is SAT
true with many clauses.

For 16 and 20 variables we used 200 clauses (200 is the
limit of BRAM), and for 8 and 5 there was no need for this
many clauses for the problem be unsatisfiable. For solvable
instances, the values were chosen to demonstrate that the
solver can be fast when the number of clauses is incremented.



Fig. 2. Results for satisfiable instances.

In Figure IV we see a steadily increase of the time consumed
with the number of variables. But this is not always the case,
since the solution can be anywhere from the first and last
possible combination. A bigger problem can be solved faster
than a small one.

Fig. 3. Results for unsatisfiable instances.

In Figure III, we can see unsolvable formulas takes longer
time to solve. This happens when the solver has to check every
possible assignment.

In this work, we could understand how a simple unit of
acceleration in FPGA can help the SAT solvers. Although the
number of variables is limited, using the golden-stage effect
on SAT problems [6], we can achieve better performance by
dispatching problem partitions whenever necessary. Although
this work clarifies a possible acceleration of SAT in FPGAs,
more future work is needed to better understand how FPGAs
can help in SAT solution.

V. CONCLUSION AND FUTURE WORK

In this paper we saw how a simple acceleration unit in the
FPGA can help SAT solvers. Although the number of variables
is limited, using the golden goal effect in SAT problems [6],
we can achieve better performance dispatching partitions of the
problem on the FPGA. We need future works to investigate
more deeply how FPGAs may help in SAT solving.

ACKNOWLEDGMENTS

Thanks Intel Research Labs, who gave us access to the
CPU-FPGA HARP platform. The Paderborn University who
currently hosts the HARP platform. To CNPq and UFV, which
is our fund raiser and university, respectively. And also to
Cadence Design Systems, Inc, who provided technical and
intelligence support.

REFERENCES

[1] Prestwich, Steven David. ”CNF Encodings.” Handbook of satisfiability
185 (2009): 75-97.

[2] Marques-Silva, Joao. ”Practical applications of boolean satisfiability.”
Discrete Event Systems, 2008. WODES 2008. 9th International Work-
shop on. IEEE, 2008.

[3] Davis, Martin, George Logemann, and Donald Loveland. ”A machine
program for theorem-proving.” Communications of the ACM 5.7 (1962):
394-397.

[4] https://www.altera.com/products/design-software/embedded-software-
developers/opencl/developer-zone.html

[5] Marques-Silva, João P., and Karem A. Sakallah. ”GRASP: A search
algorithm for propositional satisfiability.” IEEE Transactions on Com-
puters 48.5 (1999): 506-521.

[6] Yuan, Zhongda, Yuchun Ma, and Jinian Bian. ”SMPP: Generic SAT
Solver over Reconfigurable Hardware Accelerator.” Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International. IEEE, 2012.

[7] Safar, Mona, et al. ”A reconfigurable, pipelined, conflict directed jump-
ing search sat solver.” Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011. IEEE, 2011.

[8] Thong, Jason, and Nicola Nicolici. ”FPGA acceleration of enhanced
boolean constraint propagation for SAT solvers.” Proceedings of the
International Conference on Computer-Aided Design. IEEE Press, 2013.

[9] Thong, Jason. FPGA Acceleration of Decision-Based Problems using
Heterogeneous Computing. Diss. 2014.

[10] Gulati, Kanupriya, et al. ”Efficient, scalable hardware engine for Boolean
satisfiability and unsatisfiable core extraction.” IET Computers & Digital
Techniques 2.3 (2008): 214-229.

[11] Waghmode, Mandar, et al. ”An efficient, scalable hardware engine for
Boolean satisfiability.” Computer Design, 2006. ICCD 2006. Interna-
tional Conference on. IEEE, 2007.

[12] Kanazawa, Kenji, and Tsutomu Maruyama. ”An FPGA solver for
WSAT algorithms.” Field Programmable Logic and Applications, 2005.
International Conference on. IEEE, 2005.

[13] Davis, John D., et al. ”A practical reconfigurable hardware accelerator
for Boolean satisfiability solvers.” Design Automation Conference, 2008.
DAC 2008. 45th ACM/IEEE. IEEE, 2008.

[14] Hölldobler, Steffen, et al. ”A short overview on modern parallel SAT-
solvers.” Advanced Computer Science and Information System (ICAC-
SIS), 2011 International Conference on. IEEE, 2011.

[15] Aho, Alfred V., and John E. Hopcroft. The design and analysis of
computer algorithms. Pearson Education India, 1974.

[16] Safar, Mona, M. Watheq El-Kharashi, and Ashraf Salem. ”FPGA-based
SAT solver.” Electrical and Computer Engineering, 2006. CCECE’06.
Canadian Conference on. IEEE, 2006.

[17] Balyo, Tomáš, Marijn JH Heule, and Matti Järvisalo. ”SAT COMPETI-
TION 2017.”

[18] Sohanghpurwala, Ali Asgar, Mohamed W. Hassan, and Peter Athanas.
”Hardware accelerated SAT solvers—A survey.” Journal of Parallel and
Distributed Computing 106 (2017): 170-184.

[19] Intel, An. ”Introduction to the intel quickpath interconnect.” White Paper
(2009).


